k Sum
Source
- lintcode: k Sum
Given n distinct positive integers, integer k (k <= n) and a number target.
Find k numbers where sum is target. Calculate how many solutions there are?
Example
Given [1,2,3,4], k = 2, target = 5.
There are 2 solutions: [1,4] and [2,3].
Return 2.
题解
用一个三位数组记录信息,第一维表示index,即从array的第0个元素到当前这个元素,第二维表示用了几个数,第三维表示能取到的和。这个数组store[i][j][k]表示的就是从第0个元素到当前元素i,取j个元素,其和为k,有几种取法。
Java
public class Solution {
/**
* @param A: an integer array.
* @param k: a positive integer (k <= length(A))
* @param target: a integer
* @return an integer
*/
public int kSum(int A[], int k, int target) {
if ((A == null || A.length == 0) && k == 0 && target == 0) {
return 1;
}
if (A == null || A.length == 0 || k <= 0 || target <= 0 || k > A.length) {
return 0;
}
int[][][] dp = new int[A.length + 1][k + 1][target + 1];
for (int i = 0; i <= A.length; i++) {
dp[i][0][0] = 1;
}
for (int i = 1; i <= A.length; i++) {
for (int j = 1; j <= k; j++) {
for (int m = 1; m <= target; m++) {
dp[i][j][m] = dp[i - 1][j][m]; // no choose item i
if (A[i - 1] <= m) {
dp[i][j][m] += dp[i - 1][j - 1][m - A[i - 1]]; // chose item i
}
}
}
}
return dp[A.length][k][target];
}
}