Best Meeting Point
Source
A group of two or more people wants to meet and minimize the total travel distance.
You are given a 2D grid of values 0 or 1, where each 1 marks the home of someone in
the group. The distance is calculated using Manhattan Distance, where
distance(p1, p2) = |p2.x - p1.x| + |p2.y - p1.y|.
For example, given three people living at (0,0), (0,4), and (2,2):
1 - 0 - 0 - 0 - 1
| | | | |
0 - 0 - 0 - 0 - 0
| | | | |
0 - 0 - 1 - 0 - 0
The point (0,2) is an ideal meeting point, as the total travel distance of 2+2+2=6
is minimal. So return 6.
Hint:
Try to solve it in one dimension first. How can this solution apply to the two
dimension case?
Java
public int minTotalDistance(int[][] grid) {
List<Integer> I = new ArrayList<Integer>();
List<Integer> J = new ArrayList<Integer>();
for(int i=0; i<grid.legnth; i++){
for(int j=0; j<grid[0].length; j++){
if(grid[i][j]==1){
I.add(i);
j.add(j);
}
}
}
return getMin(I)+getMin(J);
}
public int getMin(List<Integer> list){
int result=0;
Collections.sort(list);
int i=0;
int j=list.size()-1;
while(i<j){
result += list.get(j--)-list.get(i++);
}
return result;
}